Serveur d'exploration sur les coopérations entre la France et le Brésil

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimization of laminated composites considering different failure criteria

Identifieur interne : 001995 ( Main/Exploration ); précédent : 001994; suivant : 001996

Optimization of laminated composites considering different failure criteria

Auteurs : RBID : Pascal:10-0155440

Descripteurs français

English descriptors

Abstract

The purpose of the present work is to analyse how different the optimal structures are when different first ply failure criterion are considered in the optimization of laminated composites. Two problems are solved: the minimum weight and the minimum material cost of laminated plates subjected to in-plane loads. The failure criterion is taken into account by means of constraints introduced in the optimization problem. Three different failure criteria are tested independently: maximum stress, Tsai-Wu and the Puck failure criterion (PFC). Emphasis is given to the PFC as it appears to agree better with practical observations. The design variables are the ply orientations, the number of layers and the layer material, and the optimization problem is solved by a genetic algorithm (GA). The results show that optimal structures highly differ when different failure criterion are considered and that none of the failure criteria is always the most or the least conservative when different load conditions are applied.

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optimization of laminated composites considering different failure criteria</title>
<author>
<name sortKey="Lopez, R H" uniqKey="Lopez R">R. H. Lopez</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire de Mécanique de Rouen, Institut National des Sciences Appliquées (INSA) de Rouen</s1>
<s2>76801 Saint-Etienne du Rouvray</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Haute-Normandie</region>
<settlement type="city">Saint-Etienne du Rouvray</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Luersen, M A" uniqKey="Luersen M">M. A. Luersen</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Mechanical Engineering Department. Universidade Tecnológica Federal do Paraná (UTFPR), Av. Sete de Setembro, 3165</s1>
<s2>80230-901 Curitiba, PR</s2>
<s3>BRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Brésil</country>
<placeName>
<region type="state">Paraná (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cursi, E S" uniqKey="Cursi E">E. S. Cursi</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire de Mécanique de Rouen, Institut National des Sciences Appliquées (INSA) de Rouen</s1>
<s2>76801 Saint-Etienne du Rouvray</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Haute-Normandie</region>
<settlement type="city">Saint-Etienne du Rouvray</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0155440</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 10-0155440 INIST</idno>
<idno type="RBID">Pascal:10-0155440</idno>
<idno type="wicri:Area/Main/Corpus">001866</idno>
<idno type="wicri:Area/Main/Curation">001076</idno>
<idno type="wicri:Area/Main/Exploration">001995</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1359-8368</idno>
<title level="j" type="abbreviated">Compos., Part B Eng.</title>
<title level="j" type="main">Composites. Part B, Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon fiber</term>
<term>Composite material</term>
<term>Epoxy resin</term>
<term>Fiber reinforced material</term>
<term>Fracture criterion</term>
<term>Genetic algorithm</term>
<term>Glass fiber</term>
<term>Laminated plate</term>
<term>Mechanical properties</term>
<term>Mineral fiber</term>
<term>Modeling</term>
<term>Numerical simulation</term>
<term>Optimization</term>
<term>Stacking sequence</term>
<term>Tensile property</term>
<term>Theoretical study</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Optimisation</term>
<term>Critère rupture</term>
<term>Matériau composite</term>
<term>Plaque stratifiée</term>
<term>Algorithme génétique</term>
<term>Epoxyde résine</term>
<term>Matériau renforcé fibre</term>
<term>Fibre carbone</term>
<term>Fibre verre</term>
<term>Mode empilement</term>
<term>Propriété traction</term>
<term>Modélisation</term>
<term>Simulation numérique</term>
<term>Etude théorique</term>
<term>Fibre minérale</term>
<term>Propriété mécanique</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Matériau composite</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The purpose of the present work is to analyse how different the optimal structures are when different first ply failure criterion are considered in the optimization of laminated composites. Two problems are solved: the minimum weight and the minimum material cost of laminated plates subjected to in-plane loads. The failure criterion is taken into account by means of constraints introduced in the optimization problem. Three different failure criteria are tested independently: maximum stress, Tsai-Wu and the Puck failure criterion (PFC). Emphasis is given to the PFC as it appears to agree better with practical observations. The design variables are the ply orientations, the number of layers and the layer material, and the optimization problem is solved by a genetic algorithm (GA). The results show that optimal structures highly differ when different failure criterion are considered and that none of the failure criteria is always the most or the least conservative when different load conditions are applied.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1359-8368</s0>
</fA01>
<fA03 i2="1">
<s0>Compos., Part B Eng.</s0>
</fA03>
<fA05>
<s2>40</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optimization of laminated composites considering different failure criteria</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LOPEZ (R. H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LUERSEN (M. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CURSI (E. S.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire de Mécanique de Rouen, Institut National des Sciences Appliquées (INSA) de Rouen</s1>
<s2>76801 Saint-Etienne du Rouvray</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Mechanical Engineering Department. Universidade Tecnológica Federal do Paraná (UTFPR), Av. Sete de Setembro, 3165</s1>
<s2>80230-901 Curitiba, PR</s2>
<s3>BRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>731-740</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15379B</s2>
<s5>354000171322010060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>40 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0155440</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Composites. Part B, Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The purpose of the present work is to analyse how different the optimal structures are when different first ply failure criterion are considered in the optimization of laminated composites. Two problems are solved: the minimum weight and the minimum material cost of laminated plates subjected to in-plane loads. The failure criterion is taken into account by means of constraints introduced in the optimization problem. Three different failure criteria are tested independently: maximum stress, Tsai-Wu and the Puck failure criterion (PFC). Emphasis is given to the PFC as it appears to agree better with practical observations. The design variables are the ply orientations, the number of layers and the layer material, and the optimization problem is solved by a genetic algorithm (GA). The results show that optimal structures highly differ when different failure criterion are considered and that none of the failure criteria is always the most or the least conservative when different load conditions are applied.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D10A06I</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001B40F30N</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Critère rupture</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Fracture criterion</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Criterio ruptura</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Matériau composite</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Composite material</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Material compuesto</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Plaque stratifiée</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Laminated plate</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Placa estratificada</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Algorithme génétique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Genetic algorithm</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Algoritmo genético</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Epoxyde résine</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Epoxy resin</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Epóxido resina</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Matériau renforcé fibre</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Fiber reinforced material</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Material reforzado fibra</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Fibre carbone</s0>
<s1>SEC</s1>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Carbon fiber</s0>
<s1>SEC</s1>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Fibra carbón</s0>
<s1>SEC</s1>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Fibre verre</s0>
<s1>SEC</s1>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Glass fiber</s0>
<s1>SEC</s1>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Fibra vidrio</s0>
<s1>SEC</s1>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Mode empilement</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Stacking sequence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modo apilamiento</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Propriété traction</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Tensile property</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Propiedad tracción</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Simulation numérique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Numerical simulation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Simulación numérica</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Etude théorique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Theoretical study</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Estudio teórico</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Fibre minérale</s0>
<s2>FX</s2>
<s5>31</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Mineral fiber</s0>
<s2>FX</s2>
<s5>31</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Fibra inorgánica</s0>
<s2>FX</s2>
<s5>31</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Propriété mécanique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Mechanical properties</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Propiedad mecánica</s0>
<s5>32</s5>
</fC03>
<fN21>
<s1>102</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=FranceBresilV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001995 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001995 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    FranceBresilV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:10-0155440
   |texte=   Optimization of laminated composites considering different failure criteria
}}

Wicri

This area was generated with Dilib version V0.6.01.
Data generation: Wed Apr 1 17:49:02 2015. Site generation: Mon Mar 11 12:05:52 2024